Light velocity control in monolithic microfiber bridged ring resonator
نویسندگان
چکیده
منابع مشابه
Enhanced fast light in microfiber ring resonator with a Sagnac loop reflector.
We fabricate a microfiber knot-type ring resonator with a Sagnac loop reflector, and control the light velocity using the device. In this structure, light is reflected by the Sagnac loop and passes through the ring resonator twice. Thus, it possesses doubled transmission and group delay comparing with the microfiber ring resonator without the Sagnac loop. We experimentally demonstrate pulse adv...
متن کاملMonolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.
We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R...
متن کاملDual-rail nanobeam microfiber-coupled resonator.
A microfiber-coupled dual-rail nanobeam resonator is proposed and demonstrated. The dual-rail scheme is employed to encourage the overlap between the light emitter and the air mode. The one-dimensional resonant cavity is formed by contacting a curved microfiber with the dual-rail nanobeam. The finite width of the dual-rail nanobeam turns out to be advantageous for both out-coupling with the mic...
متن کاملTheoretical and experimental study of structural slow light in a microfiber coil resonator.
In this paper, a compact slow-light microfiber coil resonator (MCR) is fabricated and the slow-light properties of it are analyzed and tested. Based on coupled-wave theory, a theoretical model for describing the slow-light propagation in the MCR is established. Experimentally, the MCR slow-light element is fabricated and its relative slow-light time delay is measured. The group velocity of the ...
متن کاملAmplification of near-infrared light in a photorefractive ring resonator
We have demonstrated efficient amplification of near-infrared, 0.83-μm and 1.06-μm light, in a photorefractive ring resonator using Rh:BaTiO3. The optical power oscillating inside the ring exceeded the pump power by a factor of up to 2.34. The sensitivity of a ring resonator to nanometer changes in its length was characterised using a piezo-mirror. PACS: 42.65. Hw; 42.70.Nq; 42.60.Da Photorefra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optica
سال: 2017
ISSN: 2334-2536
DOI: 10.1364/optica.4.000945